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Abstract We consider the realization of a quantum computer in a chain of nuclear spins
coupled by an Ising interaction. Quantum algorithms can be performed with the help of
appropriate radio-frequency pulses. In addition to the standard nearest-neighbor Ising cou-
pling, we also allow for a second neighbor coupling. It is shown, how to apply the 2πk

method in this more general setting, where the additional coupling eventually allows to save
a few pulses. We illustrate our results with two numerical simulations: the Shor prime fac-
torization of the number 4 and the teleportation of a qubit along a chain of 3 qubits. In both
cases, the optimal Rabi frequency (to suppress non-resonant effects) depends primarily on
the strength of the second neighbor interaction.

Keywords Quantum computer · Ising · Quantum information · Chain of spins · Second
neighbor · Shor’s factorization · Teleportation

1 Introduction

The Ising-spin chain has been proposed in [2, 4, 12, 13] as a theoretical system which al-
lows to implement a quantum computer. Typically, one would think of a chain of spin-1/2
nucleons embedded into a solid crystal, as a possible physical system, whose dynamics may
be well described by the Ising Hamiltonian. This system must be subjected to a magnetic
field, constant in time, with a sufficiently strong variation along the spin chain. Additional
RF-pulses (radio-frequency pulses) then allow the coherent control of the state of the system
such that a quantum protocol can be realized [3–5]. This is a special form of NMR quan-
tum computation as described in [11]. Ultracold atoms in optical lattices may provide an
alternative physical realization of a Ising Hamiltonian [9].

Typically, in these systems we find two types of dipolar interactions: (i) intrinsic dipole
couplings between the nuclear spins. Those scale as distance r−3 and can be cancelled by
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the “magic angle” method [20]. (ii) Mediated (mainly by the electrons) dipole couplings
which have no clear distance dependence.

Up to now, this model has been developed just theoretically and hopefully the technolog-
ical and experimental part may start in a near future. However, because the Hamiltonian of
this system is well known, many theoretical studies have been made [2–8, 14] which are also
important for the general understanding of quantum computation. In this model, first neigh-
bor Ising interaction among the nuclear spins of paramagnetic particles of spin one half was
considered. Thus, in this paper we want to consider also second neighbor Ising interaction
among the nuclear spins. The transverse coupling will be neglected since one could expect
that their coupling constants to be at least two or three orders of magnitude smaller than
the longitudinal coupling constant (Ising) for our particular configuration. With a register of
4 qubits, we perform a numerical simulation of Shor’s factorization algorithm [19] of the
number 4 and teleportation [1] of an arbitrary qubit in a chain of three qubits, allowing for
an interaction between second neighbors in the system.

2 The Model

We consider an Ising spin chain with nearest and next-nearest neighbor interaction as a
model for a quantum register. The spin chain is subject to a constant external magnetic field
in z-direction, as well as to RF-pulses (with the magnetic field vector in the x–y plane).
This chain is inside a strong magnetic field in the z-direction and may be subject to RF-
pulses (with the magnetic field vector in the x–y plane). The constant magnetic field B(z),
which must be extremely strong, also has a field gradient in the z-direction, which allows
individual addressability of the qubits. During an RF-pulse, the whole external field may be
written as

B = (B0 cos(wt + ϕ),−B0 sin(wt + ϕ),B(z)), (1)

where B0, w and ϕ are the amplitude, the angular frequency and the phase of the RF-field.
They are assumed to remain constant during a pulse, but are typically chosen differently for
different pulses. Without any RF-field, the Hamiltonian reads:

H0 = −�

(
n∑

k=1

wkI
z
k + 2J

n−1∑
k=1

I z
k I z

k+1 + 2J ′
n−2∑
k=1

I z
k I z

k+2

)
, (2)

where wk is the Larmor frequency of spin k. We denote with |0k〉 the state where the nuclear
spin k is parallel to the magnetic field and |1k〉 where it is anti-parallel. The RF-field induces
the desired transitions between the Zeeman levels of the system.

The structure of the Hilbert space of the spin chain is particularly appropriate for quan-
tum information studies, where the basis unit of information is a two-level quantum sys-
tem (“quantum bit”, or qubit for short). Any such state � = C0|0〉 + C1|1〉 can be repre-
sented with respect to some basis states |0〉 and |1〉 by two complex numbers C0 and C1

such that |C0|2 + |C1|2 = 1. The L-tensorial product of L-basic qubits form an L-register
of L-qubits. In this space, we denote the resulting product basis by |α〉 = |iL−1, . . . , i0〉
with ij = 0,1 for j = 0, . . . ,L − 1. A pure wave function can be expanded in this ba-
sis by � = ∑

Cα|α〉, where
∑

α |Cα|2 = 1. For notational convenience, we require that
α = ∑L−1

j=0 ij 2j .
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The Hamiltonian H0 in (2) is diagonal in the computational basis (the product basis
defined above):

H0|αn−1 · · ·α1α0〉 = Eα|αn−1 · · ·α2α0〉, I z
k |αk〉 = (−1)αk

2
|αk〉,

(3)

Eα = −�

2

(
n−1∑
k=0

(−1)αkwk + J

n−2∑
k=0

(−1)αk+αk+1 + J ′
n−3∑
k=0

(−1)αk+αk+2

)
.

The index α without subscript denotes the positive integer represented by the string
αn−1 · · ·α1α0 in the binary number system, e.g.: H0|101〉 = E5|101〉. Choosing the Lar-
mor frequencies wk such that ∀k : wk/wk−1 = 2, leads to a spectrum which (ignoring the
spin-spin coupling terms) has equidistant levels: Eα − Eα−1 = constant.

The RF-pulses are essential for any implementation of a quantum algorithm. During such
a pulse, the full Hamiltonian may be written in the form

H = H0 + W(t), W(t) = −��

2

n∑
k=1

(
ei(wt+ϕ) I+

k + e−i(wt+ϕ) I−
k

)
, (4)

where the frequency w, the phase-offset ϕ and the Rabi frequency � are free parameters
(�/γ is the amplitude of the RF field, where γ is the nuclear spin gyromagnetic ratio). In
the computational basis |αn−1 · · ·α1α0〉 the raising and lowering operators for spin k can be
written as: I+

k = |0k〉〈1k| and I−
k = |1k〉〈0k|. We will consider sequences of pulses, where

each pulse may vary in time. During the pulses ϕ and � are fixed as well as the RF frequency
w which is assumed to be on resonance with some allowed transition. We assume that there
are no degeneracies. Hence,

w = Eα|αk=1 − Eα|αk=0

�
= wk + J

[
(−1)αk+1 + (−1)αk−1

] + J ′[(−1)αk+2 + (−1)αk−2
]
, (5)

where it is understood that (−1)αl = 0 if l < 0 or l > n. Thus, in the center of the spin
chain (away from the borders) the J -coupling may lead to frequency shifts of �w = 0
or ±2J (�w′ = 0 or ±2J ′), whereas at the borders the frequency shifts are �w = ±J

(�w′ = ±J ′). The following notation is based on these observations. The unitary evolution
(in the interaction picture) during a resonant RF pulse is denoted by

R
μ,ν

k (�τ,ϕ) = e−iH0τ/�e−iHτ/�eiH0τ/�, w = wk + μJ + νJ ′, (6)

with μ,ν ∈ [−2,−1,0,1,2]. Note that in order that R
μ,ν

k (�τ,ϕ) is a resonant pulse, the
indices μ,ν, k must fulfill certain relations as discussed above (i.e. not all combinations lead
to resonant transitions). The wave function dynamics during such RF-pulses is computed
numerically as sketched in Appendix.

In the numerical simulations to follow (Sects. 4 and 5), we have chosen the following
parameters in units of 2π × MHz,

ω0 = 100, ω1 = 200, ω2 = 400, ω3 = 800,

J = 10, J ′ = 0.4, � = 0.1.
(7)

These parameters give rise to a simple Zeeman spectrum with equidistant levels. For the
possibly more realistic design described in [5], we would expect similar results. In our sim-
ulations, we will take advantage of the second neighbor interaction in order to reduce the
number of pulses for the realization of the quantum algorithms [15]. Those are Shor’s fac-
torization in Sect. 4 and teleportation in Sect. 5.
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3 Second Neighbor Interaction and the 2πk-Method

For the considerations in the previous section, only resonant transitions have been taken into
account. That allowed trivially to describe the dynamics under the RF-pulses analytically.
However, it is possible to go beyond this simple picture. To that end we distinguish near
resonant transitions where the frequency differs from the resonant frequency by values of
the order of J or J ′ and far resonant transitions, where the difference is of the order of the
Larmor frequencies. Then it can be shown that the Hamiltonian decomposes into indepen-
dent 2 × 2 matrix blocks as long as far resonant transitions are neglected. This still allows to
describe the dynamics under the RF-pulses analytically, and in particular it allows to control
and suppress the non (near) resonant transitions. The 2πk-method [5] and its generalization
[7] resulted from such considerations.

Assume we perform the pulse R
0,−1
1 (�τ,ϕ) in the 4-qubit quantum register. This pulse

induces the resonant transitions

|0001〉 ↔ |0011〉, |0100〉 ↔ |0110〉 (8)

at the frequency w = w1 − J ′. However, it also induces the near-resonant transitions at
frequencies w + �

|1001〉 ↔ |1011〉 |1100〉 ↔ |1110〉 : � = 2J ′,

|0000〉 ↔ |0010〉 : � = 2J,

|0101〉 ↔ |0111〉 : � = −2J, (9)

|1000〉 ↔ |1010〉 : � = 2J + 2J ′,

|1101〉 ↔ |1111〉 : � = −2J + 2J ′.

In the near resonant approximation, we may write down an evolution equation for each
transition separately. To this end let α denote the first state of the transition pair (where
α1 = 0) and β the second (where β1 = 1, ∀k �= 1 : βk = αk). Then we find for the wave
function coefficients in the interaction picture (see Appendix):

∂tDα(t) = i�

2
ei(�t+ϕ)Dβ(t), ∂tDβ(t) = i�

2
e−i(�t+ϕ)Dα(t). (10)

The solution for the evolution operator is(
Dα(t)

Dβ(t)

)
= U(t)

(
Dα(0)

Dβ(0)

)
,

(11)

U(t) =
(

ei�t/2 0
0 e−i�t/2

)(
cos �et

2 − i�
�e

sin �et
2

i�
�e

eiϕ sin �et
2

i�
�e

e−iϕ sin �et
2 cos �et

2 + i�
�e

sin �et
2

)
,

where �e = √
�2 + �2. Hence, e.g. for a π -pulse t = τ = π/� at the end of the pulse, and

we may tune � such that any near resonant transition is switched off. This only requires that

�eτ

2
= π�e

2�
= π

2

√
1 + �2

�2
= kπ ⇔

√
1 + �2

�2
= 2k. (12)

The 2πk-method as presented here has two shortcomings. If there are several near-resonant
transitions with different frequency shifts � it will be impossible, in general, to eliminate
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all of them. Second, any near resonant transition also implies a phase rotation, which cannot
be corrected by the method. In principle some of those shortcomings can be overcome at the
expense of more complex pulse sequences, as shown in [7].

For the numerical simulations in Sects. 4 and 5 we define the optimal Rabi frequency to
eliminate a near-resonant transition with shift � during a π -pulse as

�
(k)
� = |�|√

4k2 − 1
. (13)

Note that for a π/2-pulse the corresponding optimal Rabi frequency is given by the same
equation, but with k replaced by 2k.

4 Simulations of Shor’s Factorization Algorithm of Number Four

An experimental realization of Shor’s factorization algorithm has been demonstrated re-
cently in [21] using nuclear magnetic resonance. Following Shor’s approach [19] for factor-
izing an integer number N , one selects a L + M-register of the form |x;y〉, where |x〉 is the
input register of length L, and |y〉 is the evaluation register of length M . The y-register is
used to store the values of the periodic function y(x) = qx(mod N), where the integer q is
chosen co-prime to N (i.e. the greatest common divisor gcd(q,N) = 1). The algorithm is
divided into three parts see [16, Chap. 5]. First, one creates the uniform superposition of all
basis states in the x-register. Second, one chooses some co-prime number q and computes
the function y(x) = qx(mod N) in the y-register. Third, one applies the inverse discrete
Fourier transform to the x-register. After these steps, one measures the state in the x-register,
which provides the information on the factors of N . For more details, we refer the interested
reader to [16].

For factorizing the number N = 4, two qubits in each register are sufficient (L =
M = 2). The only co-prime number of N is q = 3, and thus the period of the function
y(x) = 3x(mod 4) gives the factors of N . In the present case this period is T = 2. Applying
the procedure above to the initial state �0 = |00;00〉, one obtains after each of the three
steps:

�
(ideal)
1 = 1

2

(|00;00〉 + |01;00〉 + |10;00〉 + |11;00〉), (14)

�
(ideal)
2 = 1

2

(|00;01〉 + |01;11〉 + |10;01〉 + |11;11〉), (15)

�
(ideal)
3 = 1

2

(|00;01〉 + |00;11〉 + |10;01〉 + |10;11〉). (16)

The measurement on the x-register give us the states |00〉 or |10〉 (x = 0 or x = 2), which
implies that the period of the function y(x) is T = 2, as expected.

The following computation is performed in the interaction picture. Using the parameters
from (7) and starting with the ground state of the system, �0 = |0000〉, we create �1 with
the help of three π/2-pulses:

�1 = R
−1,1
3 (π/2,π/2)R

1,1
3 (π/2,π/2)R

2,1
2 (π/2,π/2)�0. (17)

The evaluation of the function y(x) = 3x(mod 4) in the y-register is carried out with four
π -pulses:

�2 = R
−2,−1
1 (π,π/2)R

−2,1
1 (π,π/2)R

1,−1
0 (π,π/2)R

1,1
0 (π,π/2)�1. (18)
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Fig. 1 (Color online )The difference in the expansion coefficients between the final state �3 obtained from

the evolution with the full Hamiltonian and the ideal final state �
(ideal)
3 . Red impulses (towards the left) show

the real part, blue impulses (towards the right) the imaginary part. The difference in the expansion coefficients
is plotted versus α, which labels the basis states

Finally, the discrete Fourier transformation in the x-register is obtained through five
π -pulses:

�3 = R
−2,−1
2 (π,π/2)R

−1,−1
0 (π,−π/2)R

−1,1
0 (π,π/2)R

0,1
2 (π,−π/2)

× R
−1,−1
0 (π,−π/2)�2. (19)

The final measurement consists in tracing out the y-register, and measuring the probabilities
of finding the x-register in any of the possible basis states. In the present case, we would get

〈00|�x |00〉 = 〈10|�x |10〉 = 1

2
, 〈01|�x |01〉 = 〈11|�x |11〉 = 0, (20)

where �x = try |�3〉〈�3|. This yields the expected period T = 2.
In what follows, we simulate the pulse sequence for Shor’s algorithm with our model

Hamiltonian of (4). The wave-packet evolution is carried out in the interaction picture using
the parameters given in (7). In Fig. 1 we show the difference between the final state �3,
obtained from the evolution with the full Hamiltonian H(t), and the ideal final state �

(ideal)
3 .

The latter is obtained from an evolution where only the resonant transitions have been taken
into account. As deviation, we plot the real (red impulses) and imaginary (blue impulses)
parts of the difference between the respective expansion coefficients Dα and D(ideal)

α as a
function of α, which denotes the basis states, as explained above (3). We can see that by far
the largest error consists in an accumulation of residual phases in the expansion coefficients
of those basis stats which are expected to be populated in �

(ideal)
3 , i.e. |0001〉, |0011〉, |1001〉,

and |1011〉. This can be deduced from the large errors in the imaginary parts, visible in
Fig. 1. However, the probabilities of the states remain within their correct value.

In order to quantify the deviation of the real evolution with H(t) from the ideal one,
where only resonant transitions are taken into account, we introduce a figure of merit, the
fidelity [10, 17, 18]

F = |〈�(ideal)|�〉|2, (21)



Int J Theor Phys (2008) 47: 1641–1653 1647

Fig. 2 (Color online) The fidelity (21), for the final state resulting from the factorization algorithm as a

function of the Rabi frequency �. The blue arrows show the optimal Rabi frequencies �
(k)
� according to (13),

for � = 2J ′ and k = 1, 2, 3, and 4 (from right to left)

which gives the probability to find the system in the state �(ideal) even though it really is in
the state � . As we have seen in Sect. 3 that one can influence the accuracy of the implemen-
tation of the quantum protocol by appropriately choosing the Rabi frequency (the strength
of the RF field) we will first investigate the dependence of the fidelity Ffi = |〈�(ideal)

3 |�3〉|2
on the Rabi frequency. The result is shown in Fig. 2, where Ffi is plotted versus � in the
interval (0.08,0.48). The blue arrows show the positions of the optimal Rabi frequencies
�

(k)
� , according to (13) for � = 2J ′ and k = 1,2,3, and 4 (from right to left). The fidelity

clearly behaves as expected. We find maxima for those values, where the 2πk-relation is ful-
filled. The resulting curve is rather smooth at small Rabi frequencies, while additional fast
oscillations appear near � ≈ 0.3. The additional structures are due to the transitions where
the detuning is of the order of 2J . Since J � J ′ these transitions have nearly no effect for
small Rabi frequencies, but their effect becomes more and more significant as � increases.
In practice, one would have to find a compromise between a sufficiently fast evolution (for
that one needs large Rabi frequencies) and a sufficiently high fidelity, which can be achieved
more easily at small Rabi frequencies.

In order to study the mechanism behind the 2πk-method in more detail, we record the
(loss of) fidelity during the execution of Shor’s quantum algorithm as a function of time. The
result is shown for two cases, � = �

(2)
� = 0.1 for � = 2J ′, and � = 0.116 in Fig. 3. In the

first case, the Rabi frequency is a optimal one, according to (13), whereas in the second case,
the Rabi frequency is such that Ffi, as plotted in Fig. 2 has a minimum. In both cases, we see
the expected Rabi oscillations (in F(t)) during the majority of the π -pulses. In the first case,
the oscillations are completed during the π -pulses, such that F(t) at the end of a π -pulse
almost returns to the value it had at the beginning of the pulse. By contrast, in the second
case, the π -pulses stop when F(t) is almost exactly in a minimum of the near-resonant Rabi
oscillations. In the graph of the second case (light blue and pink lines) we can see that for
some pulses (e.g. the 8th and the 12th) there are apparently no oscillations, only a striking
broadening of the curve for F(t). During those pulses, the near-resonant transitions with
� = 2J ′ involve states which are almost unoccupied, such that the transitions cannot really
take place. In those instances we have a chance to see the effects of transitions with � being
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Fig. 3 (Color online) The fidelity (21), during the quantum factorization algorithm as a function of time t .

We show two cases: � = �
(2)
� = 0.1 for � = 2J ′ (red and blue lines), and � = 0.116 (light blue and pink

lines), where the fidelity of the final state has a minimum (see Fig. 2). For each case, we used alternating
colors to distinguish the individual pulses in the pulse sequence (17–19). For better visibility, the curve for
� = 0.116 is shifted to the left by 50 time units

of the order of 2J . The resulting oscillations in F(t) are too fast to be resolved, such that the
only visible effect is a broadening of the curve. This also demonstrates that the transitions
with detuning of the order of 2J can be neglected at small Rabi frequencies. That explains
the smooth behavior of Ffi(�), depicted in Fig. 2.

5 Quantum Teleportation on 3-Qubits

The basic idea of quantum teleportation [1] is that Alice (left end qubit in our chain of three
qubits) and Bob (the other end qubit) share two qubits which are in a maximally entangled
(Bell) state. Here, we shall follow the prescription of [16].

�e = 1√
2

(|0A00B〉 + |1A01B〉). (22)

We adjoin to Alice the arbitrary state

�x = Cx
0 |0〉 + Cx

1 |1〉, (23)

to be “teleported” to Bob. This results in the quantum state (�1 = �x ⊗ �e) of the whole
system

�
(ideal)
1 = 1√

2

(
Cx

0 |0000〉 + Cx
0 |0101〉 + Cx

1 |1000〉 + Cx
1 |1101〉). (24)

Then, we apply a controlled-Not (CN) operation between the added qubit and that of Alice

ĈN32|i3, i2, i1, i0〉 = |i3, i2 ⊕ i3, i2, i0〉, (25)

where i2 ⊕ i3 = (i2 + i3)mod 2. This results in the state

�
(ideal)
2 = 1√

2

(
Cx

0 |0000〉 + Cx
0 |0101〉 + Cx

1 |1100〉 + Cx
1 |1001〉). (26)
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In [16] a final Hadamard gate is applied to the added qubit. It allows Alice to measure the two
qubits in the computational basis instead of the Bell basis; see [1]. In our implementation, we
replace the Hadamard gate with a different π/2-qubit rotation Â, which however achieves
the same goal:

Â3

{ |0000〉
|1000〉 = 1√

2

{ |0000〉 − |1000〉,
|0000〉 + |1000〉. (27)

On the Bloch-sphere, this corresponds to a rotation about the angle −π/2 around the y-axis.
After some rearrangements, the final state �

(ideal)
3 = Â3�

(ideal)
2 reads:

�
(ideal)
3 = 1

2

{|00〉 ⊗ |0〉(Cx
0 |0〉 + Cx

1 |1〉) + |01〉 ⊗ |0〉 ⊗ (
Cx

0 |1〉 + Cx
1 |0〉)

+ |10〉 ⊗ |0〉 ⊗ (
Cx

1 |1〉 − Cx
0 |0〉) + |11〉 ⊗ |0〉 ⊗ (

Cx
1 |0〉 − Cx

0 |1〉)}. (28)

When Alice measures both of her qubits, there are four possible cases: |00〉, |01〉, |10〉,
and |11〉. For each case, Bob will get the original state �x, provided he applies the proper
operation to his qubits. The operation he has to choose depends on the outcome of Alice’s
measurement as follows:

Alice’s result Bob’s operation

|00〉 îd
|01〉 N̂
|10〉 −σz

|11〉 N̂σz

where

îd : |0〉 → |0〉, |1〉 → |1〉,
N̂ : |0〉 → |1〉, |1〉 → |0〉,
σz : |0〉 → |0〉, |1〉 → −|1〉.

(29)

Note that neither Alice nor Bob need to know the state �x in order to perform the transfer
to Bob’s qubit. In fact if any of the two “knew” something about the state, the state transfer
would not work.

In order to implement the quantum teleportation scheme on our Ising spin chain quantum
computer, we start with a spin chain of 4 spins (0, . . . ,3), where spin 3 is in the unknown
state �x.

�0 = Cx
0 |0000〉 + Cx

1 |1000〉. (30)

The first step consists in generating an entangled (Bell) state between qubit 2 (Alice) and
qubit 0 (Bob). This is obtained with the following three pulses:

�1 = R
1,−1
0 (π,−π/2)R

0,1
2 (π/2,−π/2)R

2,1
2 (π/2,−π/2)�0. (31)

Then the controlled-not operation ĈN32 is applied through

�2 = R
0,−1
2 (π,−π/2)R

0,1
2 (π,π/2)�1. (32)

The final state, given in (28), is obtained after applying the Â3 to qubit 3 via the following
two pulses:

�3 = R
−1,1
3 (π/2,−π/2)R

1,1
3 (π/2,−π/2)�2. (33)

As an example, we choose Cx
0 = 1/3 and Cx

1 = √
8/3 for the coefficients of the unknown

state.
Again, we simulate the pulse sequence with our model Hamiltonian of (4) using the

parameters of (7), just as in the previous section. Figure 4 shows the difference between the
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Fig. 4 (Color online) The difference in the expansion coefficients between the final state �3 obtained from

the evolution with the full Hamiltonian and the ideal final state �
(ideal)
3 . Red impulses (towards the left) show

the real part, blue impulses (towards the right) the imaginary part. The difference in the expansion coefficients
is plotted versus α, which labels the basis states

Fig. 5 (Color online) The fidelity (21), for the final state resulting from the teleportation algorithm as a

function of the Rabi frequency �. The blue arrows show the optimal Rabi frequencies �
(k)
� according to (13),

for � = 2J ′ and k = 1, 2, 3, and 4 (from right to left)

final state �3, obtained from the simulation and the ideal final state �
(ideal)
3 , given in (28).

The figure is produced exactly in the same way, as Fig. 1 for the case of Shor factorization.
Here, we find somewhat smaller deviations than in Fig. 1, which may be simply explained
by the number of pulses for the teleportation protocol being smaller.

In Fig. 5 we show the fidelity Ffi = |〈�(ideal)
3 |�3〉|2 as a function of the Rabi frequency �.

Again, Fig. 5 is the precise analog of Fig. 2, where the same quantity is plotted for the Shor
factorization protocol. We again find the expected maxima at those points, where the 2πk-
relation (13), is fulfilled. At least for sufficiently small frequencies, there are no noticeable
effects of the nearest neighbor interaction, which implies much larger detuning � ∼ 2J .
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Fig. 6 (Color online) The fidelity (21), during the quantum factorization algorithm as a function of time t for

� = �
(2)
� = 0.1, where � = 2J ′ (red and blue lines). We used alternating colors to distinguish the individual

pulses in the pulse sequence (31–33)

The present protocol contains π -pulses, as well as π/2-pulses. However, note that for π/2-
pulses, the 2πk-relation is fulfilled for even k, only—see discussion below (13). On Fig. 5,
the corresponding frequencies are marked by the second and the forth arrow, respectively
(counting from the right). The data does not show any modulation with respect to k being
odd or even. This is a clear signature that the fidelity of the present protocol is largely
determined by the π -pulses alone.

Figure 6 shows the (loss of) fidelity during the execution of the teleportation protocol as
a function of time. In the present case, we choose � = �

(2)
� = 0.1 for � = 2J ′. Thus, the

Rabi frequency fulfills the 2πk-relation (13), such that the final fidelity is maximal, locally
(see Fig. 5). In Fig. 6 we can distinguish the π/2 pulses (two on each side) surrounding
the three π -pulses in the middle of the pulse sequence. Oscillations are visible only during
the central π -pulses, not during any of the π/2-pulses. Note, however that during the last
π/2-pulse we find very fast oscillations with a relatively small amplitude, which must come
from detuning of the order of � ∼ 2J . The behavior of F(t) clearly demonstrates that the
loss of fidelity occurs almost exclusively during the execution of the π -pulses.

6 Conclusion

For a quantum computer realized with a one-dimensional chain of nuclear spins (one half),
we have studied the effect of an additional second neighbor Ising interaction. This allows
greater flexibility in the choice of appropriate pulse sequences for the implementation of a
given quantum algorithm. We have found that after adapting the 2πk-method to this new
situation, the desired gate operations can be realized with high fidelity. We have illustrated
our results with two case studies: Shor’s quantum algorithm for the factorization of an inte-
ger number, and another algorithm which allows the teleportation of a qubit across the spin
chain. In both cases, we have studied the fidelity of the whole algorithm as a function of
the Rabi frequency, as well as the decay of fidelity during the algorithm as a function of
time. In spite of the fact that both algorithms contain π - and π/2-pulses, we found that only
the π -pulses were responsible for the decay of fidelity. We found also that as long as the



1652 Int J Theor Phys (2008) 47: 1641–1653

nearest-neighbor interaction J is much larger than that of the next-nearest neighbor interac-
tion J ′, the (loss of) fidelity is dominated by the latter. In other words, if the second neighbor
interaction in a chain of nuclear spins is not entirely negligible, it will typically dominate
the non-resonant effects.

Acknowledgements This work was supported by SEP under the contract PROMEP/103.5/04/1911 and the
University of Guadalajara.

Appendix: Numerical Solution of the Schrödinger Equation

We consider the time evolution of the quantum state �(t) of the Ising spin chain during a
RF pulse as defined in (4). The Schrödinger equation reads:

i�∂t�(t) = H(t)�(t), H(t) = H0 − ��

2

n∑
k=1

(
ei(wt+ϕ)I+

k + e−i(wt+ϕ)I−
k

)
, (34)

where �(0) is the quantum state at the beginning of the pulse, and �(τ) is the state at
the end (τ is the duration of the pulse). The unperturbed Hamiltonian H0 is given in (2).
Expanding �(t) in the basis of the time-independent part H0, we arrive at the matrix form
of the Schrödinger equation:

i∂tCα(t) = Eα

�
Cα(t) − �

2

n−1∑
k=0

{
ei(wt+ϕ)Cα|αk=1(t) : αk = 0,

e−i(wt+ϕ)Cα|αk=0(t) : αk = 1.
(35)

In order to obtain the dynamics in the interaction picture, we set

Cα = Dαe−iEαt/� ⇒ i∂tDα(t) = −�

2

n−1∑
k=0

{
ei(�kt+ϕ)Dα|αk=1(t) : αk = 0,

e−i(�kt+ϕ)Dα|αk=0(t) : αk = 1,
(36)

where

�k = w − wk − J
[
(−1)αk+1 + (−1)αk−1

] − J ′[(−1)αk+2 + (−1)αk−2
]
, (37)

as obtained from (5). Here, it is understood that (−1)αl = 0 if l < 0 or l > n. In order to
evolve the wave packet numerically, it is convenient to rewrite the system of differential
equations in terms of real variables. To that end, we introduce the real variables Xα(t) and
Yα(t) such that Dα = Xα + iYα . Then we find:

∂tXα(t) = �

2

n−1∑
k=0

{− sin(�kt + ϕ)Xα|αk=1(t) − cos(�kt + ϕ)Yα|αk=1(t) : αk = 0,

sin(�kt + ϕ)Xα|αk=0(t) − cos(�kt + ϕ)Yα|αk=0(t) : αk = 1,
(38)

∂tYα(t) = �

2

n−1∑
k=0

{
cos(�kt + ϕ)Xα|αk=1(t) − sin(�kt + ϕ)Yα|αk=1(t) : αk = 0,

cos(�kt + ϕ)Xα|αk=0(t) + sin(�kt + ϕ)Yα|αk=0(t) : αk = 1.
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